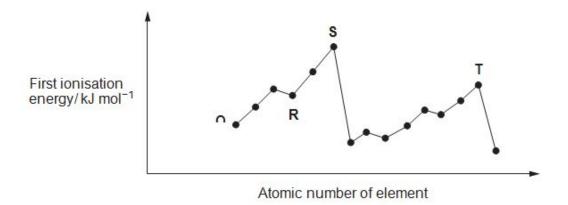
WJEC Chemistry A-level

C1.6: The Periodic Table

Practice Questions

England Specification

1. (a) Hydrogen exists as three isotopes with relative masses of 1, 2 and 3.	
State the similarities and differences in the composition of these specific isotopes.	
	[2]
(b) The first two electronic energy levels in a hydrogen atom are shown on the diagram.	
n = ∞	
n = 2	
n = 1	
(i) Complete the diagram to show energy levels $n = 3$, $n = 4$ and $n = 5$.	
(iii) Mark with an arrow the aparay shapes corresponding to the implection energy of hydrogen	[1]
(iii) Mark with an arrow the energy change corresponding to the ionisation energy of hydrogen.	[2]
	L — J


- (c) A student said that the ionisation energy of hydrogen could be calculated using the Balmer Series of lines.
- (i) In which part of the electromagnetic spectrum does the Balmer Series appear?

[1]

(ii) Explain whether or not this student was correct.

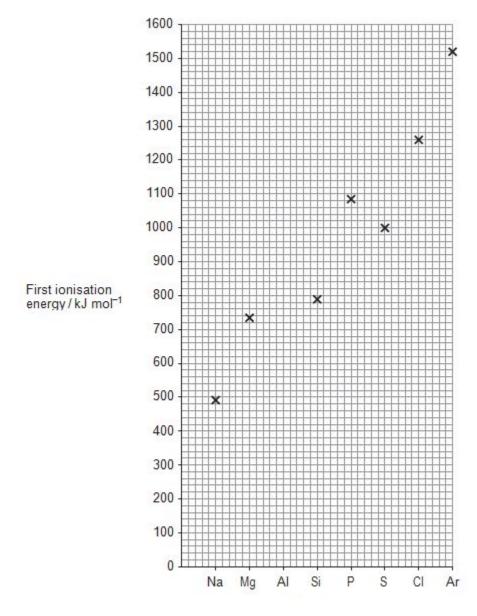
[2]

(d) The diagram shows part of a plot of the first ionisation energy of elements against their atomic numbers. Letters **Q-T** do **not** represent the symbols of the elements.

(i) Write the equation for the change occurring for the first ionisation energy of element Q.

[1]

(ii) In which group of the Periodic Table is element **R** found?


[1]

	/:::\	□		:	!		O:-	greater than	111 -C T
1	1111	⊢vniain	M/DM to	IA TIPET I	nnieation	anaray at	S IC	areater than	that of I
١			VVIIV LI	ıc ili ət i	UlliSaliUll	CIICIAV OI	U 13	uicalci liiaii	unat or i

			[3] QWC [1]

(Total 14)

- 2. Ionisation energies and atomic spectra provide evidence for the arrangement of electrons in atoms.
- (a) The following diagram shows the first ionisation energies of the Period 3 elements.

(i) State the	meaning of the term <i>i</i>	molar first	ionisation en	ergy			[2]
							[2]
(ii) Draw a c	ross on the diagram t	o suggest	the first ionis	ation energ	y of aluminiu	m.	
							[1]
(iii) Explain v	why the value of the fi	rst ionisati	on energy of	sulfur is les	ss than that c	f phosphorus.	[2]
							[²]
(b) The table	e below gives some io	nisation e	nergies for m	agnesium			
	Г	2177					
		1st	2nd	3rd	4th	5th	
	lonisation energy / kJ mol ⁻¹	736	1450		10 500	13 629	
(i) Explain w	hy the second ionisat	ion energy	is greater th	an the first.			
							[1]
(ii) Complete	o the table by suggest	ting a valu	o for the third	ionication	operay of ma	anosium	
(ii) Complete	e the table by suggest	iniy a valu	e ioi uie uillu	างเมอสแบก	energy or ma	ignesium.	[1]

	[4] QWC [1]
	(Total 12)
3. Be	rian was asked to find the identity of a Group 1 metal hydroxide by titration.
He wa	as told to use the following method.
	more water to make exactly 250 cm³ of solution. Accurately transfer 25.0 cm³ of this solution into a conical flask. Add 2-3 drops of a suitable indicator to this solution. Carry out a rough titration of this solution with the hydrochloric acid.
Beriar	n's results are shown below:
Mass	of metal hydroxide = 1.14 g
Conce	entration of acid solution = 0.730 g HCl in 100 cm³ of water
Mean	titre = 23.80 cm^3
(=) O '	b. Doing down of the Land 444 of well-like to the CCC was for the
(a) Gi	ve a reason why Berian does not simply add 1.14 g of metal hydroxide to 250 cm³ of water.
	[1]

(b) Name a suitable piece of apparatus for transferring 25.0 cm ³ of the metal hydroxide solu conical flask.	tion to a
	[1]
(c) State why he adds an indicator to this solution.	
	[1]
(d) Suggest why Berian was told to carry out a rough titration first.	
	[1]
(e) Explain why he carried out several titrations and calculated a mean value.	
	[1]
(f) The equation for the reaction between the metal hydroxide and hydrochloric acid is given M represents the symbol of the Group 1 metal.	n below.
MOH + HCl \longrightarrow MCl + H ₂ O	
(i) Calculate the concentration, in mol dm-³, of the HCl in the burette.	
	[2]
(ii) Calculate the number of moles of HCl used in the titration.	
	[1]

(iii) Deduce the number of moles of MOH in 25.0 cm³ of the solution.
[1]
(iv) Calculate the total number of moles of MOH in the original solution.
(v) Calculate the relative molecular mass of MOH.
(vi) Deduce the Group 1 metal in the hydroxide.
(Total 12)
4. Name an element that has a half-filled set of <i>p</i> -orbitals.
(Total 1)
5.
Halogens and their compounds take part in a wide variety of reactions.
(a) Give the chemical name of a chlorine-containing compound of commercial or industria importance. State the use made of this compound.

Hyd	rogen re	acts wit	h io	dine in a	a reversib	le reaction.	
		H ₂ (g)	+	$I_2(g)$	\rightleftharpoons	2HI(g)	
	0.311 m					in a vessel of volume 1 iodine and 0.011 mol of	
(i)	Write t	the expr	essio	on for th	e equilib	rium constant in terms o	f concentration, K _c . [1]
(ii)	Calcul	ate the	valu	e of $K_{ m c}$ a	at 300 K.		[1]
(iii)	What a	are the t	ınits	of K_c , i	f any?		K _c =[1]
(iv)			-	-		t up at 500 K and 1000 K 5 × 10 ⁻³ and 18.5 × 10 ⁻³ 1	
	Use th		a to	deduce	the sign	of ΔH for the forward r	eaction. Explain your [3]
							

(b)

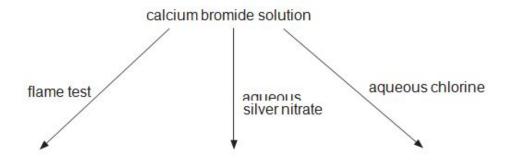
(c)	When concentrated hydrochloric acid is added to a pink aqueous solution of cobalt(II chloride, the colour changes to blue.								
	Cob	alt takes part in an equilibr	rium reaction.						
		$[Co(H_2O)_6]^{2+}(aq) + 4$	$4C\Gamma(aq) \rightleftharpoons [CoCl_4]^2-(aq) + 6H_2O(l)$						
	(i)	What is the oxidation state	te of cobalt in [CoCl ₄] ²⁻ ?	[1]					
	(ii)	What type of bonding is p	present in [CoCl ₄] ^{2–} ?	[1]					
	(iii)		ntify the ions responsible for the pink and blue co in why the colour change occurs when concent ed to the pink solution.						
	(iv)	Draw diagrams to clearly ion.	show the shape of the [Co(H ₂ O) ₆] ²⁺ ion and the [Co	Cl ₄] ²					
		[Co(H ₂ O) ₆] ²⁺	[CoCl ₄] ² -						
			Tota	l [14]					

(a) A solution of calcium chloride was obtained by adding 0.40 g of calcium metal to 80 cm³ of hydrochloric acid of concentration 0.20 mol dm⁻³. The equation for the reaction is

(i) Use the information given to show that an excess of calcium metal was used.

[3]

(ii) State **one** observation made during the reaction apart from the mixture becoming warm.


[1]

(b) A sample of a calcium compound **E** of mass 1.50 g was added to 200 cm³ of cold water and the mixture heated until it all dissolved.

Use relevant information from the table to calculate the mass of compound **E** that crystallised when the solution was cooled to 0 °C. [2]

Solubility of compound E /g per 100 g of water	Temperature / °C
0.13	0
0.75	50
1.22	100

(c) A student was given a solution of calcium bromide and asked to carry out the reactions shown in the diagram below.

(i) State the colour given in the flame test.

[1]

(ii) State what was seen when aqueous silver nitrate was added.

[1]

(iii) Give the ionic equation for the reaction occurring in (ii).

[1]

(iv) State what was seen when aqueous chlorine was added to the solution of calcium bromide.

[1]

- (v) Explain why chlorine reacted as described in (iv). Your answer should include:
 - the type of bonding and the species present in calcium bromide
 - the type of reaction occurring
 - why chlorine is able to react in this way
 - an appropriate equation

[5] QWC [1]

				(Total
Ewan and Gwyneth are our	given four unlabelle	ed bottles. They know	that these contain th	he followi
potassium carbon	ate sodium hydro	xide barium chlorid	le magnesium nitra	ate
Ewan predicted what will esented this information in		h of the four solutions	is added to the othe	ers, and
	magnesium nitrate	barium chloride	sodium hydroxide	
potassium	white precipitate	white precipitate	no visible change	
carbonate				
sodium hydroxide				
sodium				
sodium hydroxide barium chloride				
sodium hydroxide barium chloride Complete the three empty		•		
sodium hydroxide	te formed when ma	•		

between some of the solutions. For each test state the solution(s) that would give a visible change and the observation(s) that would be made.
(i) Addition of litmus solution
[1]
(ii) Flores toot
(ii) Flame test
[2]
(iii) Addition of sodium sulfate solution
[2
(c) Ewan and Gwyneth are provided with a white solid that they believe to be sodium bromide or sodium iodide.
(i) They dissolve the solid in water to make a solution. Explain what occurs when an ionic solid such as sodium bromide dissolves in water.
[2]

(b) Gwyneth uses different tests to identify the four solutions. Each test allows her to distinguish

(ii) Gwyneth uses aqueous silver nitrate to identify the solution. Give the observations expected when silver nitrate is added separately to solutions of sodium bromide and sodium iodide.
[2]
Observation with sodium bromide
Observation with sodium iodide
(iii) Ewan thinks that a further test is needed after addition of the silver nitrate to distinguish between sodium bromide and sodium iodide. Give the reagent and observations for this further test.
[2] Reagent
Observation with sodium bromide
Observation with sodium iodide
(iv) When bromine water is added to a solution of sodium iodide, a reaction occurs. Write an equation for this reaction.
(Total 16)

ionise	ed.	v the magnesium atoms are ionised in the sample.	Je
(c) In		to obtain a mass spectrum of a gaseous sample of magnesium, the sample must l	
	(ii)	Name one useful radioactive isotope and briefly describe how it is used in medici industry or analysis.	
(b)	Mag (i)	nesium also has a radioactive isotope ²⁸ Mg which has a half-life of 21 hours. If you started with 2.0 g of ²⁸ Mg, calculate the mass of this isotope remaining a 84 hours.	fter [1]
	(iii)	In order to calculate the relative atomic mass of magnesium, what would you not to know in addition to the relative mass of each isotope?	ed [1]
	(ii)	Deduce the number of neutrons present in an atom of 26Mg.	[1]
	(i)	State the number of protons present in an atom of ²⁴ Mg.	[1]
		nesium has three stable isotopes 24Mg, 25Mg and 26Mg.	

8. Magnesium is best known for burning with a characteristic brilliant white light, however in industry

it is the third most commonly used structural metal. The metal itself was first produced by Sir

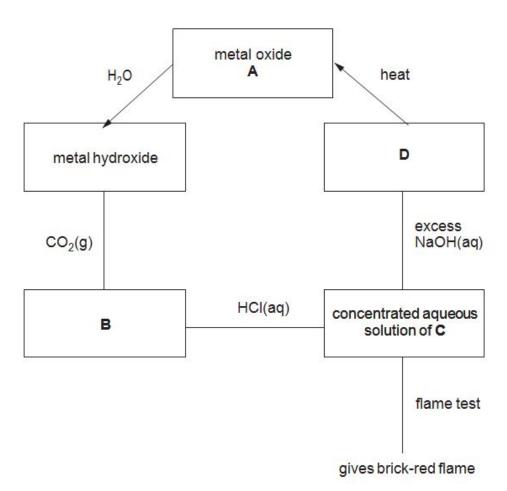
(ii) Giv	e a reasor	n why it is neces	sary to ionise the mag	gnesium atoms in th	ne sample.	
						[1]
(iii) Sta	ate how the	e ions of magnes	sium are separated.			
						[1]
(d)	compour By inse	nd. rting arrows to	th nitrogen forming represent electron of a nitride ion, N ³	s, complete the b		
Γ	1s	2s	2p	3s	3p	[با
(e)		Mg ₃ N ₂ +	cts with water to for			
	(i) B	alance the equa	tion above.			[1]
			nimum mass of ma oxide, giving your ar			1.75 g of [3]

(Total 14)

element calcium, however, reacts with water to produce calcium hydroxide and hydrogen gas.	
$Ca(s) + 2H_2O(1)$ \longrightarrow $Ca(OH)_2(aq) + H_2(g)$	
(a) A student investigated the reaction between calcium and cold water. He added 2.0 g of calcium to some water and collected the hydrogen gas formed.	
Draw a labelled diagram of an apparatus that would be suitable for carrying out this reaction and measuring the volume of hydrogen produced.	
[2]
(b) The student repeated the reaction using the same mass of barium. He noticed that the volume of gas, still at the same temperature and pressure, was less.	
(i) Give the reason why the volume of gas produced was less.	
]
(ii) Suggest another difference that the student would observe when barium was used in place of calcium.	
Explain your answer	
[2]

9. Calcium is present in teeth in the form of calcium phosphates. These do not react with water. The

(c) The student did not label the flasks containing the solutions after the reactions with barium. Give a test that would distinguish between these solutions. Include the result of you solutions.	
	[2]
(d) Calcium oxide also reacts with water to produce calcium hydroxide. Draw a dot diagram to show the bonding in calcium oxide. Show only the electrons in outer shows the contract of the con	
	[2]
(e) Barium, as barium sulfate, is used medicinally in barium meals since it is insolu shows on x-ray images.	ble in water and
(i) Starting from the solution of barium hydroxide the student produced in <i>(b)</i> , describing a pure, dry sample of barium sulfate. You should include an ionic equation for the reaction.	ribe how he could
	[3]
(ii) Calculate the maximum mass of barium sulfate that the student could make, stabarium.	arting with 2.0 g of
	[2]
Mass = g	(Total 14)


10. (a) Sodium and potassium both react with cold water but their reactivities are different. The first ionisation energy affects the reactivity of Group 1 elements.
(i) Give an observation that shows the difference in reactivity with cold water between sodium and potassium
(ii) Describe the trend in the first ionisation energy of Group 1 elements and explain why this trend occurs.
[2]
(iii) Explain how this trend affects the reactivity of Group 1 elements.
(b) A GCSE student said that, apart from metallic bonding, bonds were either ionic or covalent. An A level student said that this was not really true and that bonds could be intermediate between ionic and covalent.
(i) State one factor that governs what type of bond elements form and explain how this leads to different types of bonding.
[2]

	(ii)	Describe tl	he electron	density in	each type	of bond
--	------	-------------	-------------	------------	-----------	---------

lonic			[3
Covalent			
Intermediate			

(c) Compound A is the oxide of a metal.

The diagram shows some reactions of compound ${\bf A}$, and associated compounds, that can be carried out in the laboratory.

(i) What metal is present in compound A ?	
	[1]
(ii) What compound containing the metal is present in the aqueous solution C?	
	[1]
(iii) Describe the appearance of the contents of the test tube with compound D .	
	[1]
(iv) Write the ionic equation for the reaction between solution C and aqueous sodium hydroxide.	_
	[1]
(Total	13)